scispace - formally typeset
Open AccessJournal ArticleDOI

The machinery of macroautophagy

Yuchen Feng, +3 more
- 01 Jan 2014 - 
- Vol. 24, Iss: 1, pp 24-41
TLDR
This review focuses on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.
Abstract
Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer’s Disease

TL;DR: The description of the proteostasis network in yeast and its comparison with the human proteostatic network are described and its potential to guide interventions against AD is elaborated.
Journal ArticleDOI

The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis

TL;DR: The role of endothelial cells in the pathogenesis of atherosclerosis is reviewed and the molecular mechanisms involved are explored, finding emerging evidence links autophagy to a range of important physiological functions such as redox homeostasis, lipid metabolism, and the secretion of vasomodulatory substances.
Journal ArticleDOI

The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes

TL;DR: The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.
Journal ArticleDOI

Loss of mitochondrial ClpP, Lonp1, and Tfam triggers transcriptional induction of Rnf213, a susceptibility factor for moyamoya disease.

TL;DR: The results suggest that mysterin becomes relevant when mitochondrial dysfunction or infections have triggered RNA-dependent inflammation, and has similarities with vasculopathies that involve altered nucleotide processing, such as Aicardi-Goutières syndrome or systemic lupus erythematosus.
References
More filters
Journal ArticleDOI

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1

TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Journal ArticleDOI

Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism

TL;DR: Mutations in the newly identified gene appear to be responsible for the pathogenesis of Autosomal recessive juvenile parkinsonism, and the protein product is named ‘Parkin’.
Journal ArticleDOI

Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue

TL;DR: The results are shown to favour the ferryl ion structure, or an isomer of this structure, for the higher oxidation state, and theHigher oxidation state may provisionally be named ferrylmyoglobin.
Journal ArticleDOI

Autophagy: process and function

TL;DR: In this review, the process of autophagy is summarized, and the role of autophileagy is discussed in a process-based manner.
Related Papers (5)

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 -