scispace - formally typeset
Open AccessJournal ArticleDOI

hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase.

Reads0
Chats0
TLDR
The data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1 and is a critical component of the nutrient sensing apparatus.
About
This article is published in Journal of Biological Chemistry.The article was published on 2005-09-23 and is currently open access. It has received 542 citations till now. The article focuses on the topics: P70-S6 Kinase 1 & mTORC2.

read more

Citations
More filters
Journal ArticleDOI

TOR signaling in growth and metabolism.

TL;DR: The physiological consequences of mammalianTORC1 dysregulation suggest that inhibitors of mammalian TOR may be useful in the treatment of cancer, cardiovascular disease, autoimmunity, and metabolic disorders.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Autophagy: process and function

TL;DR: In this review, the process of autophagy is summarized, and the role of autophileagy is discussed in a process-based manner.
Journal ArticleDOI

Regulation Mechanisms and Signaling Pathways of Autophagy

TL;DR: The current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagic for cell survival and homeostasis are presented.
Journal ArticleDOI

The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism

TL;DR: In light of the recent advances in understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, the exciting therapeutic opportunities for targeting this pathway to treat these diseases are discussed.
References
More filters
Journal ArticleDOI

TSC2 mediates cellular energy response to control cell growth and survival.

TL;DR: It is described that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis.
Journal ArticleDOI

mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery

TL;DR: It is reported that mTOR forms a stoichiometric complex with raptor, an evolutionarily conserved protein with at least two roles in the mTOR pathway that through its association with mTOR regulates cell size in response to nutrient levels.
Journal ArticleDOI

TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling

TL;DR: It is shown that TSC1–TSC2 inhibits the p70 ribosomal protein S6 kinase 1 and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation) and these functions are mediated by inhibition of the mammalian target of rapamycin (mTOR).
Journal ArticleDOI

Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton.

TL;DR: It is found that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C alpha (PKCalpha) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.
Journal ArticleDOI

Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene

TL;DR: It is shown that heterozygous disruption of beclin 1 increases the frequency of spontaneous malignancies and accelerates the development of hepatitis B virus-induced premalignant lesions, providing genetic evidence that autophagy is a novel mechanism of cell-growth control and tumor suppression.
Related Papers (5)