scispace - formally typeset
Open AccessJournal ArticleDOI

Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation

Reads0
Chats0
TLDR
It is shown that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt, and Akt-mediated phosphorylation of BeClin 1 functions in Autophagy inhibition, oncogenesis, and the formation of an autophile-inhibitory BeclIn 1/14-3-3/vimentin intermediate filament complex.
Abstract
Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Autophagy in human health and disease.

TL;DR: This review discusses the cellular process of autophagy (“self-eating”), which plays key roles in normal development of the immune system and adaptation to stress, as well as in a wide range of disease states.
Journal ArticleDOI

Self-consumption: the interplay of autophagy and apoptosis

TL;DR: The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens, and the disruption of the relationship between autphagy and apoptosis has important pathophysiological consequences.
Journal ArticleDOI

Biological Functions of Autophagy Genes: A Disease Perspective

TL;DR: The biological functions of autophagy genes are discussed from the perspective of understanding-and potentially reversing-the pathophysiology of human disease and aging.
Journal ArticleDOI

Oxidative stress and autophagy: the clash between damage and metabolic needs

TL;DR: This review aims at providing novel insight into the regulatory pathways of autophagy in response to glucose and amino acid deprivation, as well as their tight interconnection with metabolic networks and redox homeostasis.
References
More filters
Journal ArticleDOI

Autophagy in the Pathogenesis of Disease

TL;DR: This Review summarizes recent advances in understanding the physiological functions of autophagy and its possible roles in the causation and prevention of human diseases.
Journal ArticleDOI

AKT/PKB signaling: navigating downstream.

TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.
Journal ArticleDOI

Methods in Mammalian Autophagy Research

TL;DR: Methods to monitor autophagy and to modulate autophagic activity are discussed, with a primary focus on mammalian macroautophagy.
Journal ArticleDOI

Induction of autophagy and inhibition of tumorigenesis by beclin 1.

TL;DR: It is shown that beclin 1 is a mammalian autophagy gene that can inhibit tumorigenesis and is expressed at decreased levels in human breast carcinoma, suggesting that decreased expression of Autophagy proteins may contribute to the development or progression of breast and other human malignancies.
Journal ArticleDOI

The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism

TL;DR: In light of the recent advances in understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, the exciting therapeutic opportunities for targeting this pathway to treat these diseases are discussed.
Related Papers (5)