scispace - formally typeset
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
- Vol. 12, Iss: 1, pp 1-222
TLDR
In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium

TL;DR: It is suggested that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagic inhibition as a novel therapeutic strategy for chronic airway diseases.
Journal ArticleDOI

Phosphoinositides: Lipids with informative heads and mastermind functions in cell division.

TL;DR: How the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling is described.
Journal ArticleDOI

Combined anticancer effects of sphingosine kinase inhibitors and sorafenib

TL;DR: Combination of an SK inhibitor with sorafenib causes synergistic inhibition of cell growth in vitro, and potentiates antitumor activity in vivo, and a foundation is established for clinical trials evaluating the efficacy of combining these signaling inhibitors.
Journal ArticleDOI

Optineurin in amyotrophic lateral sclerosis: Multifunctional adaptor protein at the crossroads of different neuroprotective mechanisms

TL;DR: It is proposed that the failure of the weakest link in the optineurin neuroprotective network is sufficient to disturb homeostasis and set-off the domino effect that could ultimately lead to neurodegeneration.
Journal ArticleDOI

Cytoprotective autophagy maintains leukemia-initiating cells in murine myeloid leukemia.

TL;DR: The functional role of autophagy in AML maintenance and drug resistance is investigated using tamoxifen-inducible conditional knockout mice of Atg5 or Atg7, which are essential genes for Autophagy, combined with an mixed lineage leukemia-eleven nineteen leukemia-induced murine AML model to highlight the intratumoral heterogeneity related to autophileagy.
References
More filters
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1

TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Journal ArticleDOI

Role of AMP-activated protein kinase in mechanism of metformin action

TL;DR: It is reported that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed.
Journal ArticleDOI

Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.

TL;DR: The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1, and three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.
Related Papers (5)

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 -