scispace - formally typeset
Open AccessJournal ArticleDOI

Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium

TLDR
Significant roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways are demonstrated.
Abstract
Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux.

read more

Citations
More filters
Journal ArticleDOI

Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action

TL;DR: This Review focuses on the major constituents of air pollutants and their impacts on chronic respiratory diseases in China and highlights targets for interventions and recommendations for pollution reduction through industrial upgrading, vehicle and fuel renovation, improvements in public transportation, lowering of personal exposure, and improvement in air quality.
Journal ArticleDOI

Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution.

TL;DR: UFPs play a major role in adverse impacts on human health and require further investigations in future toxicological research of air pollution and the knowledge of nanotoxicology contributes to the understanding of toxicity mechanisms of airborne UFPs in air pollution.

Guidelines for the use and interpretatoin of assays for monitoring autophagy

TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway.

TL;DR: PM exposure enhanced the airway inflammatory response significantly through ROS-mediated activation of MAPK (ERK, JNK, p38 MAPK) and downstream NF-κB signaling pathways and appeared to be the key regulator for PM-induced lung inflammation.
Journal ArticleDOI

Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

TL;DR: Results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB, and may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.
References
More filters
Journal ArticleDOI

Autophagy in the Pathogenesis of Disease

TL;DR: This Review summarizes recent advances in understanding the physiological functions of autophagy and its possible roles in the causation and prevention of human diseases.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease

TL;DR: Progression of COPD is associated with the accumulation of inflammatory mucous exudates in the lumen and infiltration of the wall by innate and adaptive inflammatory immune cells that form lymphoid follicles, coupled to a repair or remodeling process that thickens the walls of these airways.
Journal ArticleDOI

Regulation Mechanisms and Signaling Pathways of Autophagy

TL;DR: The current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagic for cell survival and homeostasis are presented.
Related Papers (5)

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 -