scispace - formally typeset
Open AccessJournal ArticleDOI

p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death

TLDR
In this article, the polyubiquitin-binding protein p62/SQSTM1 has been shown to be involved in linking polyUBiquitinated protein aggregates to the autophagy machinery.
Abstract
Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and coimmunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Autophagy fights disease through cellular self-digestion

TL;DR: Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health, and to play a role in cell death.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Methods in Mammalian Autophagy Research

TL;DR: Methods to monitor autophagy and to modulate autophagic activity are discussed, with a primary focus on mammalian macroautophagy.
References
More filters
Journal ArticleDOI

Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.

TL;DR: The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1, and three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.
Journal ArticleDOI

Development by Self-Digestion: Molecular Mechanisms and Biological Functions of Autophagy

TL;DR: This review summarizes the current knowledge about the molecular machinery of autophagy and the role of the autophagic machinery in eukaryotic development and identifies a set of evolutionarily conserved genes that are essential forAutophagy.
Journal ArticleDOI

Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease.

TL;DR: This work shows that mammalian target of rapamycin (mTOR) is sequestered in polyglutamine aggregates in cell models, transgenic mice and human brains, and provides proof-of-principle for the potential of inducing autophagy to treat Huntington disease.
Journal ArticleDOI

Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice

TL;DR: Conditional knockout mice of Atg7 were generated and showed the important role of autophagy in starvation response and the quality control of proteins and organelles in quiescent cells.
Related Papers (5)