scispace - formally typeset
Open AccessBook ChapterDOI

Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models

Reads0
Chats0
TLDR
Several molecular cell biological and imaging methods to study autophagy and mitophagy in neuritic and somatic compartments of differentiated neuronal cell lines and primary neuron cultures are highlighted, using protocols developed in toxic and genetic models of parkinsonian neurodegeneration.
Abstract
Recent advances indicate that maintaining a balanced level of autophagy is critically important for neuronal health and function. Pathologic dysregulation of macroautophagy has been implicated in synaptic dysfunction, cellular stress, and neuronal cell death. Autophagosomes and autolysosomes are induced in acute and chronic neurological disorders including stroke, brain trauma, neurotoxin injury, Parkinson's, Alzheimer's, Huntington's, motor neuron, prion, lysosomal storage, and other neurodegenerative diseases. Compared to other cell types, neuronal autophagy research presents particular challenges that may be addressed through still evolving techniques. Neuronal function depends upon maintenance of axons and dendrites (collectively known as neurites) that extend for great distances from the cell body. Both autophagy and mitochondrial content have been implicated in regulation of neurite length and function in physiological (plasticity) and pathological remodeling. Here, we highlight several molecular cell biological and imaging methods to study autophagy and mitophagy in neuritic and somatic compartments of differentiated neuronal cell lines and primary neuron cultures, using protocols developed in toxic and genetic models of parkinsonian neurodegeneration. In addition, mature neurons can be studied using in vivo protocols for modeling ischemic and traumatic injuries. Future challenges include application of automated computer-assisted image analysis to the axodendritic tree of individual neurons and improving methods for measuring neuronal autophagic flux.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes

Daniel J. Klionsky, +235 more
- 16 Feb 2008 - 
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

Daniel J. Klionsky, +2983 more
- 08 Feb 2021 - 
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Journal ArticleDOI

Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission

TL;DR: It is found that loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries, and Pink1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.
References
More filters
Journal ArticleDOI

Alpha-synuclein in Lewy bodies.

TL;DR: Strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease, indicates that the LewY bodies from these two diseases may have identical compositions.
Journal ArticleDOI

Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain

TL;DR: An NH2-terminal fragment of mutant huntingtin was localized to neuronal intranuclear inclusions and dystrophic neurites in the HD cortex and striatum, and polyglutamine length influenced the extent of huntingtin accumulation in these structures.
Journal ArticleDOI

Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury

TL;DR: It is demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes

Daniel J. Klionsky, +235 more
- 16 Feb 2008 - 
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Related Papers (5)

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 -